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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-196

ANALYSIS OF TEMPERATURE DISTRIBUTION AND RADIANT
HEAT TRANSFER ALONG A RECTANGULAR FIN
OF CONSTANT THICKNESS

By Seymour lLieblein

SUMMARY

A theoretical analysis has been conducted of the one-dimensional
steady-state radiant heat-transfer characteristics of rectangular fin
prlates of constant thickness with uniform heat source along the leading
edge. The analysis was made for plates of both finite and infinlte length
with constant thermal properties and no convection. Results are presented
in terms of the variation of the ratio of surface temperature to source
temperature and of radiating effectiveness with generallzed distance from
the heat source for a wide range of ratios of environment sink-to-source
temperatures.

Results show that environment sink temperature has a pronounced ef-
fect on the temperature profiles but only little effect on the variation
of radiating effectiveness. Negligible influence on the total heat radi-
ated is also observed up to ratios of sink-to-source temperature of about
0.4. For a given sink temperature ratio, the decrease in plate tempera-
ture and radiating effectiveness with distance from the heat source de-
pends primarily upon the magnitude of the source temperature and, to a
lesser extent, on the plate thickness, emissivity, and thermal
conductivity.

The solutions are made applicable for a variety of environmental
conditions through the determination of an equivalent sink temperature
for the environment. Examples of special environmments that can be treated
in this manner and relations for determining the equivalent sink temper-
ature for the environment are given. Design parameters for minimizing
plate volume are derived, and applications of the results to practical
radiator considerations such as weight optimizations and thermal stresses
are indicated.



INTRODUCTION

In the absence of a heat-absorbing atmosphere in outer space, many
space vehicles are faced with the problem of the dissipation of waste
heat. Although some excess heat may be removed through absorption in the
fuel in special cases, the prevailing means of heat dissipation will un-
doubtedly be by radiation. Preliminary analyses of space-vehicle power-
plants (e.g., ref. 1) indicate that sizable surface areas are required to
radiate the waste heat. Radiating surfaces may thus comprise a consider-
able part of the total weight. A knowledge of the characteristics of
heat-radiating surfaces in space is therefore necessary for the evaluation
and design of space-vehicle systems.

It is currently envisioned that heat-radiating surfaces in spacecraft
will either be part of the vehicle skin, as in the case of earth-launched
vehicles, or be separate component structures, as may be found in an
orbital-launched system. For these systems, the radiating surfaces may
either be continuous surfaces (in which the waste heat to be radiated is
introduced either continuously or periodically along the surface) or may
be composed directly of the tubes or channels carrying the heat-transfer
fluid, or some combination of the two. In many instances, therefore,
radiators will contain surfaces that will be required to both radiate and
conduct heat along the surface. Several examples of such radiator con-
figurations are shown schematically in figure 1. Furthermore, these ra-
diators will be exposed to other heat-emitting surfaces such as the sun,

a planet, or other structures. Thus, fundamentally, such radiators cor-
respond to the problem of the combined effects of conduction and radiation
on the net heat transfer from a surface to an arbitrary environment in

space.

For analysis purposes, the continuous radiating surface with periodic
distribution of heat sources can be approximated by the flat plate of
constant thickness with a heat source along the leading edge of the plate.
If it is further specified that the heat source be constant along the
leading edge, the problem is reduced to a one-dimensional one. Such a
situation in reality would correspond to a radiator to which the waste
heat is transferred by means of condensation of working-fluid vapor (vapor
heat cycle).

In the analysis presented herein, generalized steady-state heat-
transfer characteristics are determined for fin plates of both infinite
and finite length and constant thermal properties. Calculations of the
variation of surface temperature and heat-transfer effectiveness with
distance from the heat source are made by numerical means for a wide range
of ratios of sink-to-source temperatures. The solutions are made applica-
ble for a variety of special environmental conditions through the use of
an equivalent sink temperature. Design parameters for minimizing fin plate
volume are determined, and application of results to practical radiator
considerations is indicated.
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A similar analysis of the heat-transfer characteristics of a fin plate
uniformly heated along an edge previously reported in reference Z was not
received until the present calculations were nearly completed. The present
report is believed to be a more complete and detailed treatment of the
problem and carries the solutions to a wider range of fin end and effective
environmental temperatures. In addition, data on the variations of tem-
perature and heat radiated along the fin are included herein.

SYMBOLS
A surface area
A projected surface area normal to incoming radiation
B factor in equation for net heat transfer from fin plate (eq. (A24))
C constant of integration
E emissivity factor in equation for net heat transfer from fin plate

(eq. (A24))

&\ radiant energy contained in wavelength increment aA

F view or configuration factor for radiation between two surfaces

P view factor for radiation between the illuminated portlon of a
surface and another surface

f function

k thermal conductivity’

L plate generalized length parameter, 1 IOEiiogl(lggo)s, units of
length

[ plate length

m,n exponents

N total number of discrete surfaces in fin environment

Q integrated heat radlated per unit time

Qe heat conducted per unit time

6 integrated heat radiated per unit time with entire fin at source

temperature



heat flux from concentrated heat source (e.g., 429 (Btu/hr) (sq ft)

° for solar radiation in neighborhood of earth)

S’ spacing between radiator tubes

T plate temperature, deg abs

TS sink temperature of environment, deg abs

To source temperature, deg abs

Tg equivalent sink temperature of environment, deg abs

T effective average temperature for fin, deg abs

t plate thickness

Vv plate volume

W plate width

X plate generalized distance parameter, x‘JGE£i09)<;§8;)3, units of
length

b ¢ distance along plate

a absorptivity

A change in quantity

€ hemispherical emissivity

| radiating effectiveness

e angle between incoming radiation and normal to receiving surface,
eg

A wavelength of radiant energy

P reflectivity

o Stefan-Boltzmann constant (e.g., 0.173x10-8 (Btu/hr) (sq £t)(°R%))

Subscripts:

b enclosed body

d discrete surface
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e earth
f fin strip surface
T fin total surface
i, integers referring to discrete surfaces
1 terminal value at end of plate (x = 1)
1! with length 1 held fixed
min minimum
S concentrated heat source
s sink environment
t with thickness held fixed
W with width held fixed
X distance position along plate
A monochromatic value
0 heat source at leading edge of plate (x = 0)
1 "upper" surface of fin plate
2 "lower" surface of fin plate
o infinitely long plate
ANALYSIS
Assumptions

The analysis considers the general case of a flat fin plate of con-
stant thickness t and length 1 uniformly heated along its leading edge
at x = 0, as shown in figure 2. Heat is conducted along the plate from
the source and 1ls radiated from both surfaces to the surrounding environ-
ment. The expected variation of plate temperature from its value at the
source Ty to its terminal value T; and the variation in net integrated

radiant heat transfer along the plate are indlcated in the lower part of
the figure.



The specific agsumptions used in the development of relations for
the heat-transfer characteristics of the fin plate are as follows:

(1) The heat transfer is invariant with time (steady state).

(2) Heat is transferred out of the plate only by radiation (no con-
vection or external conduction) through a nonabsorbing medium.

(3) Thermal properties are constant.

(4) There is no conduction in the y-direction.

62S-d

(5) The plate temperature is effectlvely constant across the thickness
t at all x positions (valid for t << W and t << Z).

(6) The heat loss from the two exposed side edges is sufficiently
small so that they can be considered to be thermally insulated (valid
for t << W).

(7) The heat loss from the end edge, when exposed, 1is sufficiently
small so that the end edge also can be considered to be thermally insulated
(valid for t << 1).

The problem is thus reduced to a mathematical formulation for one-
dimensional steady-state heat transfer under combined radiation and
conduction.

Governing Equation for Temperature Distribution

The fundamental differential equation for the temperature distribu-
tion in linear heat flow under combined radiation and conduction has been
established in the literature (e.g., ref. 3, p. 135). For completeness,
the derivation for the specific case of the rectangular fin plate will
be developed herein.

The differential equation for the temperature variation is obtained
from consideration of the heat balance for an elemental strip W dx as
shown in figure 2. The local heat conduction through the cross-sectional
area tW at position x 1s given by Fourier's law as

Qe ,x = ~k(tW) (%)x (1)

At x + dx, the heat conduction is

d
Qc,x+dx = -k(tW) (%)x + —(%(43‘- dx (2)
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The net internal heat conduction across the shaded element is then obtained
as

dQ, = -k(tw)<§-x2—g-) dx (3)

In the absence of any convection or external conduction, the external
heat loss from the strip is given by the difference between the heat ra-
diated from both surfaces of the strip and the heat received by the strip
surfaces by radiation from the external environment. In practical situa-
tions, the external environment of the fin may be composed of a large en-
closing surface or several discrete surfaces in conjunction with one or
more concentrated heat sources. In general, the determination of the net
heat transfer between the fin and an arbitrary environment is extremely
difficult, since the solution of complex integral equations is required
(e.g., ref. 4, pp. 26-47). However, simple approximations for the net
heat transfer have been obtained in special cases through the use of
simplifying assumptions. Several practical situations for which simple
relations are possible are discussed in appendix A.

For the special cases considered therein, the net heat radiated from
the surfaces of the elemental strip can be expressed in the general form

aqQ = cE(T4 - Tg"‘)w dx (4)

where E 1is a factor involving the fin surface empissivities and T; is

an equivalent sink temperature for the particular environment, as defined
in appendix A. The specific conditions required to make equation (4) an
acceptable representation of the net heat transfer are alsc given in ap-
pendix A. For example, for the elementary case of a fin plate with equal
thermal properties on both surfaces orbiting around the earth (temperature
Te) with one surface always parallel to the earth,

E = 2¢ (5?3)

and

* _ lfa A\ S cos 6
Ts = z(e)T‘é + (e) 20 (5b)
where S 1is the solar constant and 8 1s the angle between the sun's
radiation and the normal to the plate. It is also shown 1In appendix A
that, for the environmental conditions considered, the factor E and the
equivalent sink temperature T¥ are both effectively independent of x.

For steady state, the net heat loss from the surface (eq. (4)) is
equal to the change in the internal heat conducted across the strip glven
by equation (3). Thus,



w(ﬁ)dx = U—E(T4 - T;A)w dx

ax? Kt
or
4T  oE
aT —-(14 _ T*4) (6)
dxz kt s

Equation (6) is readily integrated once through the use of the substitution
p = dT/dx to give (since the temperature slope is everywhere negative)

ar _ '/@<I4-ST§4T)+C (7)

dx okt

The constant of integration C is evaluated from the boundary con-
dition at x = 1. If the plate is of infinite length, it is clear that
at x =1 = o the temperature slope must approach zero, so that
(aT/dx); = 0. For this condition, from equation (7),

20E (.5 4
Co = - m(Tz - 5T1T§) (8)

If the plate is of finite length and one of a series of connected plates
with repeated temperature variations (continuous surface with intermittent
heat sources), then x = 1 represents the point of minimum temperature
between the sources. Here again, the boundary condition is identically
(dT/dx)Z = 0, and equation (8) holds. If the plate is of finite length

and the end edge is exposed to an environment, a net radiant heat loss will
occur from the end surface area Wt. However, if t << l, as shown in
appendix B, this edge loss can be neglected, and, again, equation (8)

will be satisfactory.

With the constant of integration given by equation (8), the temper-
ature gradient, from equation (7), is

€. . ‘/%.%\[(15 - 13) - ST¥A(T - T,) (9)

If all temperatures are expressed as a ratio of the source temperature,
equation (9) becomes

d(T/Ty) 2(10%) ( To V3. [[/T\5 (T;\° TSN r T,
o WY@ - @] G &5

(10)

62G-H
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Furthermore, since the terms in the first radical are all independent of
x and nondimensional, the independent distance variable can be expressed
for simplicity as the generalized distance parameter

X=x |oB(107) (ITOO)S (11)

kt 00

so that the basic differential equation for the temperature variation along
the plate becomes

d(T/T ) 5 T, \S T*\4 TZ
— - = -0.6325 \l[(T—T(‘)) - (T—é) J- 5(63‘) (TTS i 65) (12)

Thus, the equation is reduced to a form involving only the three independ-
ent variables X, Ty/Tq, and T%/T,.

Solutions for the temperature-ratio variation along the plate were
made for the three basic situations of the infinite plate with zero sink
temperature, the infinite plate with a range of sink-to-source tempera-
tures, and the finite plate with a range of sink-to-source temperatures.
For the plate of infinite length, the boundary condition requires that no
net heat be radiated at infinity, and, therefore, T, = T¥ and

(dT/dx); = 0. 1In this case, equation (12) reduces to

d(T/TO) e T*\4 /p T*
—%—— = -0.6325 J(—IG) - S(T%) (-%) + 4(@—2-)5 (13)

For the special case of the infinite plate with zero equivalent sink tem-
perature, equation (13) reduces further to a simple form that can be
integrated directly to give

2/3
1

1 +0.9487 x IGE(IOQ)(TO )3
5

T
7 = (14)

kt 100

Solutions for the cases with nonzero sink temperatures (egs. (12)
and (13)) were obtained by numerical solution by a point-slope method on
an IBM 653 electronic computer. The value of X at which the slope term
d(T/Tg)/dX attained a value of zero was taken as the generalized length

of the plate

o or(20%) [ To \3
L= 14" \Tooo (18)
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for the given value of TZ/TO and T;/TO. For the X-increment schedules

used, a comparison between the exact solution of equation (14) and a cor-
responding numerical solution indicated that numerical values of T/To

were within -0.00002 of the exact values. The values of I determined
for the finite plate were estimated to be correct to about 0.5 percent.

Heat~Transfer Relations

Heat radiated. - At any position X along the plate, the heat ra-

diated from the surfaces from X = 0 to X = X can be obtained in either

of two ways. First, equation (4) can be integrated directly in terms of
X to give

X

5 *\4
Q = w4cEkt(lOl5) (l—g-g—o-) [(%)4 - (%) ] ax (16)
0

or, for comparison purposes in terms of a heat-radiated quotient,

X
Qy /W 4 T*\4
X = (TT-) aX - (—E> X (17)
‘/ NER: 0 To
oEkt(10 )(_3566) 0

The total heat radiated from a plate of length 1 1is then

L
QL/w _ T \4 Tg 4
| &S (F) 2

Ty \°
0Bkt (1019) (1_0‘03 0

Second, since only internal heat conduction is involved in the plate
heat transfer, the heat radiated from the surfaces will be equal to the
heat conducted into the plate from the source at x = O minus the heat
conducted past the point x = x. This conducted heat is given by

Qe = -ktW (%‘)O + ktw(%xg) = Q (19)
X

62G-H
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or, in terms of T/TO and X,

(109)( To \o ([a(T/T )] [é(T/TO)]
W = -ktWlo ‘EEki - (1000) {[—TX"Q— o L & Kk

from which is obtained for the heat-radiated parameter

Qx /W - {[d(:}/{To)]o ) [d(Z}/{To)]X} (20)

‘ / Ty
oEkt (1019) (1000)

The slopes of the temperature ratios at X =0 and X = X are obtained
from equation (12) for T/Tq = 1.0 and T/Ty = T/Ty, so that

Sperry il LAY
NE - FE- D} =

The total heat radiated from the plate Q 1is obtained from equation (21)
for T/TO = TZ/TO’ in which case the second radical becomes zero.

For the plate of infinite length, since T; = T%,

(S = 0.6325 [Jl +4 (E)S - 5(%)4
oEkt(10%°) (1000)
7 [TV /p TH\5
NE T ] e

According to equation (22), the maximum heat radiated Q, in this case
will occur when the second radical is zero, that is, when T/Ty = T%/T,
which, as expected, is the condition at infinity. Equation (22) also
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shows that, for the infinite plate, the effect of equivalent sink temper-
ature on the maximum heat radiated can be indicated by the ratio

Qo (Tg)S (Tg 4
= - V4w - s\& (23)
where
Q, Tn \5
(7 = 0.6325 GEkt(lOlS) 158—0- (24)
T%=0
Heat ratio. - In many instances, it is convenient to consider the

local heat radiated in terms of its ratio to the terminal value for s
given plate configuration. This ratio, called the heat ratio QX/QL, is

given from equations (17) and (18) as

= T (25)

or, from equation (21), as

T\5 () T*e/p T
o, L6 - &))< E-7)

ARCIE I

For the special case of the infinite plate and zero sink temperature, the
heat ratio is obtained from equations (22) and (24) with T¥ = O and with

T/TO from equation (14). The result is

(26)

/3
% 1

00 9 T 5
1 + 0.9487 xJ“E(lO (o )
kt  \1000

625-4



E-529

13

Radiating effectiveness. - A measure of the radiating effectiveness
of the plate can be obtained by comparing the actual heat radiated from
the plate to the heat that would be radiated if the plate were at a con-
stant temperature equal to the source temperature. This isothermal heat
radiated up to any distance x, designated by the symbol ﬁx, is obtained

from integration of equation (4) for T = Ty to give

% |-
T:oEx(lOlz)-Ia%a [\-(E\B)

or, in terms of the generalized distance parameter X, from equation (l?),

A ¥\4
o @] e
%Ekt( 1015) (16’3‘6)

Thus, the radiating effectiveness, given by the ratio QX/QX and designated
by the symbol 1, becomes, in general,

n=%§= 2 1-@%}4 (29)

or, by dividing equation (21) by equation (28),

oL IR
L CRCIRCICEE

For the Infinite plate with nonzero sink temperature, since
T, /Ty = Tg/To, the radiating effectiveness of equation (30) reduces to
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T*\5 T*\& 5 T*\5 T*\&
- 02 g (S (=) -J(Tl) oz - s(f-) &)
® [ (Tg)‘*] 0 0 0 0 o/ \o
x|1 - &
To

(31)
and, for the special case of zero sink temperature, to
L 0.6325 [, T \5/2
or, from equation (14), to
/3
0.6325 1l
Moo = = - (32)

1

9N/ Ty (T, \°
xJOE(lO )( 0 ) 1+ 0.9487 x \IGE(lO) o)
Kt \1000 kt 000,

The same result, of course, can be obtained from direct integration of
equation (29) in conjunction with equation (14).

HEAT-TRANSFER RESULTS

The results and discussion for the heat-transfer characteristics of
the fin plate will be presented in terms of the infinite-length plate and
the finite-length plate. The results for the infinite plate are useful
in establishing reference variations and in indicating the influence of
the principal variables involved.

Infinite-Length Plate

Zero_ sink temperature. - Exact solutions for the heat-transfer char-
acteristics of a fin plate of infinite length were obtained for the con-
dition of zero sink temperature from equations (14), (27), and (32).
Although single curves of the various heat-transfer characteristics can
be obtained with the use of the generalized distance parameter X, varia-
tions were computed for a range of values of source temperature to show
the trends involved. The resulting plots are given in figures 3(a), (b),
and (c), which show respectively the variations of temperature ratio, heat
ratio, and radiating effectiveness with distance from the heat source for
a wide range of source temperatures. In figure 3(b) it is seen that, as
& result of the general ability of a unit surface area to radiate more
heat at higher temperatures, the plate can radiate most of its heat in
successively shorter distances as source temperature is increased. As a

625-4
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consequence, the plate temperature will fall off more rapidly with dis-
tance at the higher source temperatures, as indicated in figure 3(a).
The steeper temperature profiles at the higher source temperatures also
result in a reduced radiating effectiveness, as shown in figure S(C),
since the integrated value of ('I‘/To)4 in equation (29) will decrease as

TO increases.

It is also noted that according to equations (14), (27), and (32)
the physical distance x at which a given temperature ratio or heat ratio
is attained will also be & function of plate thickness, emissivity, and
thermal conductivity. However, in view of the powers involved in each
variable, variations in x due to changes in these quantities should
generally be less pronounced than the variations due to corresponding
changes 1in source temperature.

Nonzero sink temperature. - Examples of the change in temperature-
ratio profile that occurs for a fixed value of source temperature when
the equivalent sink temperature varies are shown for illustrative purposes
in figure 4. The effect of increasing sink temperature reduces the plate
distance at which most of the heat is radiated. For purposes of generali-
zation, the variation of plate heat-transfer characteristics with equiva-
lent sink temperature ratio Tg/TO as obtained from the numerical solu-

tions is shown in figure 5 in terms of the generalized distance parameter

NS Ty \3
_ EE(lO ) 0 . .
X = x1~r s 000/ ° The temperature profiles are expressed as the

ratio (T - T*)/(Ty - T#) in figure S5(a) in order to normalize the curves
S 0 s

between the limits of zeroc and unity, and the heat ratio and radiating
effectiveness as before are given in figures 5(b) and (c), respectively.’
(The curves for Tg/TO = 0 in fig. 5 represent all the curves in fig. 3.)

The effect of equivalent sink temperature ratio in reducing the ef-
fective radiating distance along the plate for the entire range of Tg/TO

is clearly indicated in figures 5(a) and (b). The radiating effectiveness,
however, as shown in figure 5(c), varies only little with sink temperature
ratio. Actually, for values of X less than about 0.5, the effectiveness
increases with increasing T;/To’ while, for values of X greater than

about 1.25, a decrease is observed.

In order to obtain an understanding of the variation of radiating
effectiveness with sink temperature ratio, it is noted from equation (29)
that n will depend on the ratio of decrease of the numerator compared
with the rate of decrease of the denominator as Tg/TO is increased. The

numerator represents the difference between the average value of the
fourth power of T/TO over the X increment in question and the base
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value (T;/TO)4. This difference will therefore depend on the curvature

of the temperature-ratio variation. If the temperature-ratio profiles
were similar for all sink temperatures, numerator and denominator would

increase proportiocnately, and the effectiveness would remain constant with

sink temperature. However, for the infinite fin plate, as shown in figure
S5(a), the temperature profiles are not similar. Thus, the variation in

effectiveness with sink temperature ratioc is a result of the nonsimilarity

of the profiles. For values of X less than about 0.5 in figure 5(a),
less change in curvature of the temperature variation occurs as sink tem-
perature ratio is increased. The average value of (T/To)4 will therefore

tend to increase relative to the base value and produce an increase in
effectiveness. On the other hand, for X greater than 1.25, the average
value will tend to decrease relative to the base value as T*s‘/’l‘O is in-

creased, and thus a lower effectiveness will be obtained. In fact, the
decreasing effectiveness with Tg/TO for large values of X can readily

be established mathematically from equation (31). It has been shown that
a maximum value of QX is attained theoretically at infinity. However,

values of Qg approaching the maximum are attained quite rapidly in many

cases. Thus, the effectiveness tends to approach the variation given by
Qo/@- The maximum value of effectiveness is then obtained from equation

Tg 5
l+4;r—I|—-
- 0.6325 0
Nl X (T*)
5
1 -1-=
T

The variation of effectiveness with sink temperature ratio at a fixed
large value of X is readily established from substitution of several
trial values.

(33)

As far as maximum heat radiated is concerned, figure 6 illustrates
the variation with sink temperature as obtained from equation (23). It
is seen that values of T;‘/To up to 0.4 can be attained with less than

a S-percent reduction in heat radiated. Also shown in the figure for
comparison is the variation expected from a hypothetical plate of con-
stant temperature throughout. The maximum heat ratio for the fin plate
over the full range of Tg/TO is therefore not very much different than

that for the isothermal plate.

625-4
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Finite-Length Plate

Terminal values. - For the case of a fin plate of finite length, the
temperature profiles will be altered somewhat compared to the infinite
plate in order that the boundary condition of zero temperature slope at
the end of the plate be met, as illustrated in figure 7. For large values
of X, as indicated in figure 7, only small changes in the profile are
necessary, since slope values for the infinite plate are small in this
region. However, as X decreases and the slope for the infinite plate
becomes larger, a greater difference between the terminal value of T/TO

and the infinite plate value is required to produce the zero slope. How-
ever, since it is expected that the temperature ratios must approach unity
at X =0 in both cases, the difference in T/TO must then approach zero

at the leading edge.

Variations of terminal temperature ratio (T, - Tg)/(TO - T¥%) with

oE(10%) ( To \°
generalized length parameter 1 s 1000 obtained from the numer-

ical solutions are shown in figure 8 for a wide range of equivalent sink
temperature ratios. The increase in temperature ratio at the end of a
plate of finite length compared with that value for the infinite plate at
the same distance can readily be obtained from a comparison of figures 8
and 5. As expected, maximum differences in temperature ratio are obtained
in the region from about L = 0.4 to 0.8.

In view of the increased temperature along the finite plate compared
to the infinite plate up to the same value of length, it is expected that
the total heat radiated from the finite plate (QL) will be greater than

that radiated from the infinite plate up to x = 1 (Q .). Also, the
L,oo p)

maximum difference in heat radiated should follow the maximum differ-
ences in temperature ratio. The comparison ratio QL/QL,m obtained from

the calculations is shown in figure 9. Also presented in the figure are
lines of constant terminal temperature ratio as obtained from figure 8.

The ratio of heat radiated is found to decrease with increasing sink tem-
perature, since the difference between (T/T;); and (T/TO)Z,m decreased

with increasing Tg/TO. The effect of sink temperature is pronounced
only for values of Tg/To greater than about 0.2.

Since the ideal heat radiated (heat radiated at source temperature)
is the same for both the finite and infinite plates, the increase in heat
radiated for the finite plate should result in a greater radiating ef-
fectiveness for the finite plate, especially at the low values of X where
QL/QL,m is large. Calculated variations of radiating effectiveness with

plate-length parameter are plotted in figure 10 to show this trend (as seen
by comparison with fig. 5(c)). As for the infinite plate, the variation
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of radiating effectiveness with equivalent sink temperature is not large.
Apparently, the effect of the nonsimilarity of temperature profiles for
the finite plate is such as to give a decrease in effectiveness with in-
creasing sink temperature at all values of X. Thus, the total heat
radiated from a fin plate of given length can readlly be determined from
figure 10 and equation (28).

The effect of equivalent sink temperature on the magnitude of the
heat radiated for a plate of given length is illustrated in figure 11.
Here again, a less-than-5-percent reduction in sink temperature total
heat radiated is obtained for values of Tg/’l’O up to about 0.4.

Variations along fin. - For the varlations of temperature ratio and
heat radiated along plates of finite length, it was found more practical
to present the results in terms of derived analytical functions rather
than in the required large number of individual plots. As can be seen
in figure 7, the difference in temperature ratio between the finite-
length plate and the infinite rlate at the same value of X steadily in-
creases as X 1increases to L. It was found that this difference can
be closely approximated by a power variation such that the lccal-
temperature-ratio variation for the finite length plate can be expressed

as
A N
= + |ale—22]) (2 34
To - T8 \To - T%/s To - TE/3 \L
where [KT - Tg)/(Tb - Tgi]w is the temperature ratio for the infinite

plate at the particular value of X in question (fig. 5(a)), and the
term within the brackets represents the difference between the terminal
value of temperature ratio (at the end of the plate) and the value of
temperature ratio for the infinite plate at the same value of X (i.e.,
at X =L). Values of terminal temperature ratio are obtalned from fig-
ure 8, and values of the exponent n deduced.from the numerical solution
as a function of terminal temperature ratio and equivalent sink tempera-
ture are given in figure 12. The maximum error 1n temperature ratio in-
volved in the use of the power relation was about £0.005.

The variation of heat radiated for a given value of TZ/TO and
Tg/TO can be obtained from the local values of T/Ib determined pre-

viously in conjunction with equation (21). In an alternate procedure,
the heat variation can be calculated from the derived empirical relation

Q;%; =1+ (éifw - )(%)m (35)
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where Qx’w is the heat radiated up tc the value X for the infinite
plate (fig. 5(b) and eq. (22), or fig. 5(c) and eq. (28)), QL/QL,w is
the terminal heat ratic as given in figure 9, and deduced values of ex-

ponent m are given in figure 13. Maximum error involved in the use of
equation (35) for the heat ratio QX/QX o was calculated to be about
)

+£0.005.

PLATE VOLUME RELATIONS

Another factor important in the analysis of the fin plate as a ra-
diator component is the relation between the plate volume and the plate
heat-transfer characteristics. In particular, it is desirable to deter-
mine the values of the plate thickness, width, and length that will result
in a minimum plate volume for a given amount of heat radiated. Such re-
lations for minimum plate volume are necessary for optimizations of
radiator configurations.

The volume of the plate is given by
V= tiW : (36)

and the heat radiated from the plate, as obtained from equations (19)
and (10), 1is

R A S e )

(37)

In equation (37), since there is a value of generalized length parameter
L corresponding to each value of TZ/TO for a given Tg/To, the radical

term will be a function of L. Thus, equation (37) can be expressed as

T.\5
Qp = 632.5 /T W \/;ko(109)<—1686) ~/F(L) (38)

where

£(L) = £(1/4/%) = 1 (E)S s(g)‘l Tz)
- T \T) T \T/ N T T (29)

The ratio of plate volume to heat radiated 1s obtained in terms of
the physical variables 1 and t from equations (36) and (38) for fixed
properties and source temperature as
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_Q\{_: Cl+/t (40)
l £(1+/t)

where C 1s a constant. It is seen immediately that a minimum of the
ratio V/Ql occurs when t goes to zero. The value of 1 required to

make the ratic go to zero, however, is not obvious, since the guotient
involving ! goes to infinity as 1 goes to infinity and is indetermi-
nate when 1 goes to zero. Furthermore, inasmuch as f(L) is always
finite, equation (38) shows that for a fixed value of heat radiated W
must go to infinity as t goes to zero. A low-volume fin will therefore
generally be characterized by small thickness and large width.

In practical cases of radiator design, however, it may be necessary
to place some restriction on the allowable value of either t, 1, or W.
It may therefore be more useful for design purposes to determine the re-
lations among the remaining variables that will produce the least volume
for a given heat radiated when cne variable is held fixed.

Fixed length. - If the plate length must be fixed and the thickness
and width are free to vary, the relation for ratio of plate volume to heat
radiated is obtained from equation (36) after substitution for W from
equation (38) and for t from equation (15) as

(..!.) _ Zztfzv(L)] (41)
Qi _ ( To
632.5 k 156'6)
where
£,0(L) = —% (42)

LW/fZLs

The volume function fl,(L) decreases continuously with L as shown in

figure 14(a), indicating that, for least volume at fixed length 1, the
design value of L should be as large as possible. This result is to
be expected, of course, since it was indicated previously that least volume
results from least thickness, and an increase in I for this case can
result only from a decrease in thickness (for constant k, E, and To).

The specific variatlon of the volume function curves in figure 14(a)
1s explained as follows: As L increases, the square root of the thick-
ness, according to equation (15), will decrease linearly with L. How-
ever, for low magnitudes of L (say between 0.1 and about 1.0), the length
function f(L) as shown in figure 15 will increase with L but at a rate
less than linear. Thus, some increase in W will be required by eguation
(38) to maintain Q; constant. But, since t decreases with the square

to

a
oo
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of L, a marked decrease in the product tW and therefore in the volume
is to be expected. When L attains values that result in an essentially
constant f(L), the required increase in W will become greater and the
decrease in volume should tend to be less. Specifically, in the region
where f(L) is essentially constant, tW should vary as l/L. Thus, the
volume function variation in figure 14(a) should approach a slope of
unity as 1 gets very large.

The procedure for a design of fixed length is thus to determine t
from the value of 1 and some practically selected large value of L
consistent with other design requirements {meteoroid puncture, thermal
stress, etc.). The plate width W is then determined from equation (38)
for the desired heat transfer from the computed values of f(L) and t.
It should be noted that fixed-length designs with large values of L will
necessarily have low radiating effectivenesses.

Fixed thickness. - If the plate thickness is fixed and the length
and width can vary, the appropriate expression for ratio of plate volume
to heat radiated can be obtained from equations (36) after substitution
for W from equation (38) and for 1 from equation (15) as

B, —Bl—

T
632.5 UE(lOQ)(Iaga)

where

L

) = 7y

The volume function fy(L) plotted in figure 14(b) decreases with

decreasing L and appears to approach its minimum value as L approaches
zero. These results indicate that least fin volume at fixed thickness
requires least length, since only 1 =0 can give L = O.

(44)

The reason for the specific variation of the curves in figure 14 (b)
is obtained from consideration of the length function f(L) shown in
figure 15. As 1L decreases from high values of L, f(L) will remain es-
sentially constant. At fixed t, as indicated by equation (38), W will
also tend to remain constant for a given value of Q;. Thus, the volume

will vary only with 1, which decreases linearly with L. As L de-
creases to the region where a marked decrease in f(L) occurs, a corres-
ponding increase in W will be necessary to produce the required Ql’

and the fall-off in volume will be progressively diminlshed. Apparently,
as [ approaches zero, the required increase in W becomes sufficient
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to completely offset the effect of the decrease in | and result in a
minimum of the function.

Thus, when fixed thickness is prescribed, a low value of 1 should
be used, and the corresponding values of L and W for the desired heat
transfer and thermal properties are determined respectively from equations
(15) and (38). 1In practical radiator designs, however, there will be
limitations to the minimum value of ! that can be used because of spacing
requirements for the tubes and because a sufficient ratio of 1 to t
must be maintained to validate the one-dimensionality of the solutions.

Fixed width. -~ From the pbreceding two cases, 1t was seen that, theo-
retically, the fin plate for low volume will be characterized by very
small 1 and very small t, and, consequently, the width W will be very
large. 1In some instances, however, it may be necessary to restrict the
value of W so that the ratio Q/w is fixed. 1In this case, the ratio
of plate volume to heat radiated is obtained from equation (36) with
substitution for 1 from equation (15) and for t from equation (38).
The result is

v (ay /) %e, (L)

(45)

Q 3
3( ZlolB)kE2< To )
(632.46)°(c 7500

where

£,(L) = L ' (46)
W [f(L)]S;Z

Plots of the volume function f (L) in figure 14(c) show that a definite

minimum of the function exists for all values of sink temperature. Values
of L for minimum plate volume range from about 0.92 at T*/TO =0 to

S
about 0.76 at T¥/T, = 0.9.

The reason for the existence of & minimum in this case is clear when
the variations with I of t, 1, and f(L) are considered for the cage
of equation (45). As L decreases from large values of L, f(L) remains
essentially constant, so that, for fixed Qz/w in equation (38), t also

shows little variation. The plate volume teq. (36)) will therefore tend
to decrease linearly with L since only the variation of 1 1ig effective
in this region. As L decreases to the region vhere f(L) starts to de-
crease, an increase in t must occur in order to satisfy equation [38)
and the reduction in volume tends to become brogressively smaller. In
the limit as L and f£(L) go to zero, t must go to infinity, and (since
nonzero values of 1 are allowed) the volume also will go to infinity.
Thus, a minimum of the volume function must occur.

1
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In a fixed-width design therefore, minimum volume will be obtained
if t 1is selected as obtained from equation (38) for the desired value
of QZ/W and for f(L) evaluated at the minimum value of L as found in

figure 14(c). The plate length 1 is then determined from equation (15).
Radiating effectiveness for these minimum values of L will vary from
about 0.565 at T¥/T) = 0 to 0.61 at T¥/T, = 0.9 (see fig. 10).

For convenience, a plot of terminal temperature ratio
(1y - Tg)/(To - T#) against length function L wupon which lines of con-

stant ratio of plate volume to minimum volume are drawn is illustrated in
figure 16. Thus, for fixed-width designs, the closeness to minimum plate
volume can readily be determined for any selected value of plate-length
parameter or terminal temperature ratio.

APPLICATION OF RESULTS

Tne principal application of the preceding theoretical results for
the radiant heat-transfer characteristics of a rectangular fin plate will
be in the design of waste-heat radiators for satellite and space vehicles.
Since the heat source in the problem has been presecribed uniform along
the leading edge of the plate, the results will apply only to radiators
in which internal heat 1s supplied by means of a condensing vapor. Several
possible radiator configurations employing fin plates are illustrated in
figure 1. '

In the first illustration (fig. 1(a)), a single or double isolated
fin plate is used to radiate heat supplied from the centerbody. In order
that the derived results be valid in this case, it is necessary that the
net heat transfer from the fin plate is not significantly affected by
any adjacent vehicle structure. The second figure (fig. 1(b)) represents
a single-surface continuous fin radiator composed of a series of adjacent
fin plates with internally attached heat supply tubes at spacing S' = 21.
The dashed lines in the figure indicate that the fin plates and supply
tubes may also be of integral rather than welded construction. The ex-
pected temperature variation along the fin is also shown in the figure.
Such a radiator construction might be part of a vehicle outer skin.

The total surface area required to radiate a given amount of heat in
this case can be given by, since E = g,

Q

A =nS'W = neGCﬂg - T;4)

(47)

where n is the number of supply tubes and 1 1s the radiating effective-
ness as defined previously. The heat supplied can alsc be related to the
tube flow area as follows:



24

_ _ 2 ,
@ = oH, = pvH nur{ (48)
where p, v, and ® are respectively the vapor density, flow velocity,

and flow rate, H. is the heat of condensation of the fluid, and ry is

the inner radius of the tube. Thus, for given tube and fin plate thick-

nesses, a radiator design of minimum total weight can be determined from

the use of equations (47) and (48) and the derived results for radiating

effectiveness and minimum plate volume. (In such calculations, it may be
necessary to consider the inner surface of the fin and the exposed outer

surfaces of the tubes to be thermally insulated.)

A double-surface continucus fin radiator is shown in figure 1(c).
Similar relations and procedures can be established for this configuration
to establish the spacing and overall width for minimum weight. Comparisons
can then be made with other double-surface configurations such as the
adjacent tube radiator of reference 1 and the fin and tube radiator de-
scribed in reference 5. For the radiator of figure 1(c), 1t should be
noted that, in an actual case, the heat radiated from the fin surfaces
might be somewhat greater than the values determined from the current
analysis since some heat will be radiated from the tube surfaces to the
central region of the inner surface of the fin plate.

In another application to radiator design, the preceding results
can be utilized to determine the elementary thermal stresses that will
occur in the fin plates. According to reference 6, the thermal stresses
in a rectangular fin plate of constant thickness can be calculated from
integration of the plate temperature variations as determined herein.
Thus, significant application of the results derived in this analysis
can be found in radiator design studies.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 2, 1959
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APPENDIX A

FIN ENVIRONMENT

As indicated in the section entitled ANALYSIS, simple algebralc
relations for the net heat transfer between the fin plate and an arbitrary
environment can be obtained only for certaln simplified situations. In
general, environments that can be treated in this way will consist of
several separated discrete surfaces each at uniform temperature and/or a
large enclosing surface also of uniform temperature, and one or more con-
centrated heat sources. Examples of such environments are given in
figure 17.

In order to obtain simple solutions for the net heat transfer to
these enviromments, the following basic conditions must be met:

(1) The emissions and reflections from all surfaces are diffuse
(i.e., Lambert's cosine law is obeyed) .

(2) The view factors from a differential area on the fin surface to
the discrete or enclosing surfaces are essentlally constant over the fin

surface.

Condition (1) 1s the necessary assumption normally adopted in radia-
tion analyses for rough surfaces. Condition (2) 1s approached by surfaces
that are elther far removed from the fin (figs. 17(a) and (b)) or, if
close to the fin, by surfaces that are extremely large compared to the
fin (fig. 17(c)). For example, such a composite environment might be
represented by a fin on a spaceship adjacent to another spaceship near a
planet. Specific developments for each of the illustrative envirouments
in figure 17 will now be considered.

Complete Enclosure

Relations are availlable for the net heat transfer between an enclosed
body and an enclosure of uniform temperature T, and area Ag 1if the

variation over the enclosure of the view factor fram a differential area
on the enclosure surface to the body is comparatively small. This as-
sumption, as well as condition (2), can be met exactly for such geometries
as concentric spheres, coaxial cylinders, or a thin equatorial disk in a
sphere. For these configurations, the net heat transfer between the en-
closed body and the enclosure is given by

€0 (T% - T‘é)Ab

A
1 io]
L Eb(‘ss ) l)As

Q= (A1)
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These conditions, however, for practical purposes, can be closely approxi-
mated for a body and enclosure for which the distance between the two
surfaces does not vary much over the surfaces. For a radiating fin plate,
this condition will be approached if the fin is centrally located within
a very large enclosure (fig. 17(a)). The equation for net heat transfer
between the fin strips and the sink surface then becomes, since Ag >> Ay,

4Q = (eg) + epp)o(Tf - %)W ax (A2)

In reality, such an environment might be represented by a fin plate at or
near the center of a large furnace or other large enclosing structure.

Although not a true enclosing surface, outer space can be regarded
as a black body enclosure of effective temperature Ty obeying equation

(A2). For practical purposes, however, the sink temperature of space (of
the order of about 40° R) can normally be neglected in radiator studies.

Discrete Surfaces with Concentrated Heat Source

The case of a fin environment consisting of one or more discrete
surfaces and a concentrated heat source is illustrated in figure 17(b).
Heat-transfer relations for this environment can readily be formulated
if the additional condition is imposed that the view factors from the
discrete surface to the fin strip are sufficiently small that multiple
reflections from these surfaces will be negligible. (This condition will
be approached if the ratio of the distance between the fin and the dis-
crete surface to the fin length is large.) In many cases of radiator
design, it may be sufficient to neglect reflections entirely; however,
for completeness, the analysis will include Ffirst reflections from all
heat sources. -

The net heat loss from the fin to the environment is obtained as the
difference between the heat emitted by the fin and the heat absorbed by
the fin from the environment bodies. The heat emitted from the surfaces
fl1 and f2 of the fin strip W dx is given by

dQp = (epy + efz)chw ax (A3)

Heat will be received by the fin strips from direct emissions from the
discrete surfaces and the concentrated heat source and from reflections
from the discrete surfaces of heat emitted from the fin, the concentrated
heat source, and other discrete surfaces. However, according to the scope
of the analysis, only first reflections need be considered. If the en-
vironment is enclosed by outer space, there will also be a heat return from
space, but, as indicated previously, this heat is comparatively
insignificant.

YASIC
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Discrete-surface emission. - The heat received by a fin strip from
direct emission from a discrete surface of area. Aj, uniform temperature

4
Ti, and emissivity ey 1is
4
aQy _p = €4 0T A Fy _p0py (A4)

The double subscript fi1 for the total absorptivity in equation (A4) is
used to indicate that the magnitude of o 1s based on the characteristics
of both the fin surface (symbol f) and the incoming radiation from the
discrete surface (symbol i). This distinction is necessary since, by
definition,

Gy pEpg A
0

Opy = — (AS)
j{ e\i dA
0

where e,y 1is the incident energy contained in the spectral increment

d\. Thus, the magnitude of « will depend on the characteristics and
temperature of the absorblng surface and on the temperature of the original
emitting body. Then, since temperature and emissivity are constant over
the respective fin strip and discrete surfaces, equation (A4) can be ex-
pressed in terms of the fin strip area and the view factor from fin strip
to discrete surface according to the reciprocity theorem .

AjFi_p = AfFr g (A6)
as
4
dQs_p = €qOT{ApFp_japy = €40T{Fp jap W dx (A7)
Discrete-surface reflection. - The heat originating from another sur-

face J that is reflected from the discrete surface 1 +to the fin and
is absorbed by the fin i1s given by

4Qj_r = (GJGT%Aij-i)pijFi-fa‘fj (A8)

where Fy{_p 1s the view factor from the portion of surface 1 that is

illuminated by the radiation from surface J (for a flat surface,

f -
Fi_p = F;_;), and vhere
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f Pri®ar A
0

Pij = —~ (A9)
~/. e%j dAa
0]

Since no change in spectral distribution 1s assumed to occur after a
reflection, the fin absorptivity Of 5 is based on the radiation spectrum

of the original emitting surface j. Equation (A8), from the reciprocity
theorem for Aij-i and then for A F{ 5, can then be expressed as

4 1

Heat-source radiation. - The heat received by the fin strip from
direct and reflected heat-source (solar) radiastion 1s

where Ai is the projected area of a discrete surface normal to the in-
cident radiation from the heat source, and Fi{_¢ 1s the view factor from

the portion of the surface i1lluminated by the heat source to the fin
strip. As before, equation (All) can be expressed in terms of fin area
as

13

Ay '
dQg_r = S(cos fpglopgW dx + S(—A:)piSFf'-_iGTSW dx (A12)

where, for the special case of a flat discrete surface,

AI
L cos 6 (A13)
Ai iS
Fin reflections. - Inasmuch as the temperature varies over the surface

of the fin, the exact expression for the heat originating from the fin
surface that is reflected back to the fin strip surface will involve inte-
gration of ; over the length of the fin. However, for the purposes of

this analysis, 1t should be sufficient to consider an effective average

Z@lue for the fourth-power variation of the fin temperature, denoted by
T%, such that an equivalent algebraic expression can be used. In this

case, the heat received by the fin after reflection from a discrete sur-
face will be given by

625-4
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_
dQr_r = €p0TF(IW)F7_ ;05 ¢F;_rlpp (A14)

From the reciprocity theorem for (ZW)F— ;» €quation (Al4) becomes

4
dop_p = €p0TpA Fy FF; _pPiplre
or, again, from reciprocity for AiFi_e,
dQp_¢ = erT%Fi—TFf-ipif“ffw dx (A15)

In an actual calculation, 1t will be necessary to assume a trial value
for E% in equation (Al5) based on To and T3;. A later check on the

assumed value can be made, but it is doubtful whether any recalculation
based on a more exact value for T% will generally be necessary.

Net radiation. - The net heat lost by both fin surfaces is then ob-
tained as the difference between equation (A3) and the summation of equa-
tions (A7), (Al0), (Al2), and (Al5) for all discrete surfaces, or

N N
4Q = (ey) + €5,) 0TgW dx - e TiFey 40 Qpyg * i eiTi:FfZ-iafZi

Ng
1 1
2 i; GJTJFI inJ flJ)Ffl—i + 2 2 s ing fZJ)FfE-i
J=
N
¢ 2 (cos 84yq) + ( Bena) Al v
5 £18/%r18 cos Oppglappg + A), PisFf1-1%r13

1
-
— 1 -_—
(A)i PisFre-1%2s| * Sr1Tr11 F1fr1-1P1r1% 101

cpaTeols Foleo-1Piraeaen | oW & (Al6)
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In a practical calculation, the need for including many of the brace
terms in equation (Al6) will depend largely on the expected magnitude of
the reflectivities and the view factors involved. The view factor from
the fin strip to a discrete surface is defined specifically as

1 cos PBf cos B4 dAj dAr
Fey = K; > (A17)

nr
Ap Ai

where r 1is the distance vector from the fin strip to a point on the
discrete surface, Pp 1s the angle between r and the normal to the fin

surface, and B; is the angle between r and the normal to the discrete
surface. A preliminary rough estimate of Fg_{ can be obtained, however,

if average values of fg, By, and r are considered to give

cos Bg cos Py Ai
T

Thus, the maximum value of view factor will be of the order of

b3

A

]

Example. - A special case of interest covered by these relations is
given by a fin plate orbiting around the earth such that one surface of
the fin is parallel to the surface of the earth, and the other surface is
exposed to the sun (fig. 17(e)). For this environment, equation (Al6)
reduces to, with subscript e used for the earth,

dqQ = (€f1 + €f2)0T%w dx - geeTiFfZ—eQTZe

+ 51« Be1) A '
g | lcos Bpigiaris + | T ) Pesfra-edros

e
+ €poTe P = F oW ds
Cretrae-Talra-ePera®rara( W X pon)

Since the earth"s surface will be effectively flat and of infinite area
with respect to the fin, both Ff2~e and F%Z-e can be taken equal to

unity, Fo_F» can be taken egual to zero, and (A‘/A)e can be taken as

62S-H



E-52%9

31

cos Bp1g. Then, for equal thermal properties on both fin surfaces, equa-
tion (A20) becomes

aq = {2e 0Tt - [,0Thape + S(cos Opglapg(l + peg)]tw ax  (a21)

If, as a further simplification, the earth can be regarded as a black
body so that ee =1 and Peg = 0, the equation is reduced to

dq = {Zech§ - @Hﬁafe + S(cos efs)afS]}w dx (A22)

The fractional error involved in neglecting the earth sink tempera-
ture and solar radiation for this configuration is then

4
1 [fore) [ Te arg) S(cos Bgg)
Error = EK?)(@) + (Ef ) O'T%- ] (A23)

Calculated variations of this error with fin temperature are shown in
figure 18 for (op./€p) =~ (apg/€p) =~ 1, which might represent a worst case

for radiators. It 1is seen that the effects of solar radiation and earth
sink temperature will be less than 5 percent for fin temperatures greater
than about 1000° F.

General Form

For the environment cases considered herein, it is noted that, if

the terms modifying UT%- in equations (A2), (Al6), and (A20) were des-

ignated by the symbol E, and if the terms within the braces of each equa-
tion were designated by the symbol B, then the net radiant heat loss from
the plate can be represented in the form

dQ = ofET] - BjW ax (A24)
or
4 B
aQ = UE{Tf . E}w ax (A25)

Furthermore, if

B
g =T (A26)
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then the heat loss relation becomes simply
aQ = aE(TI‘% - Tg‘l)w dx (A27)

where T; is called the equivalent sink temperature for the particular

environment as defined by equation (A26). The quantity E is evaluated
from the term modifying o F in the heat-loss equation, and the quantity

B 1s obtained from an4evaluation of the brace term (i.e., all the terms
that do not modify on). For the three cases cited herein, E 1s equal

to the sum of the emissivities on the two fin surfaces, that is,

E=¢ +¢ (A28)

However, this may not be so in all possible cases.

In a similar manner, a heat-loss relation in the form of equation
(A27) can be established for other possible environments that meet the
qualifications and assumptions listed. It should be noted, however, that
equation (A27) will not be valid for environmental surfaces whose distance
from the fin is less than about an order of magnitude greater than the
length of the fin.

In equations (A2) and (Al6), since the fin thermal properties are
assumed constant with temperature, all €p and Qe values will be con-

stant with x. Furthermore, since the fin plate 1s flat, Gf will also

be effectlively constant with x. Then, with the view factors between the
environment surfaces and the fin prescribed effectively constant over the
fin (condition (2)), all quantities except Tp in these equations will

be independent of x. Thus, E and T¥ can be treated as constants in
any integration of equation (A27).

62S-d
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APPENDIX B

RADIATION LOSS FROM PLATE EDGE

If the plate end edge is exposed to an environment, a net radiant
heat loss will occur from the end surface area Wt (fig. 2) according to
the relation analogous to equation (5):

where the equivalent sink temperature with respect to the end edge Tg 1

J
need not necessarily be equal to T¥ for the fin surfaces. This heat
must be supplied internally from the plate by conduction such that

%, = ’ktw(gg)l = q (B2)

It is thus obtained that, for this case,

E
&), - (- (59

The constant of integration, from equations (7) and (B3) is then, after
factoring terms,

soEct (1% - At )2
Cy = - .S_E% (T%r- 5T§4T1)l:l - Zk’ét gT% - 5;;‘1'1)‘_'1)] )

The terms before the brackets, however, are equal to the constant of
integration for zero edge heat loss as given by equation (8). Thus,
equation (B4) can be expressed as

2

) [ (_T.%f_ﬂ
X SUEZtTO@)S_ T,

I
1l - 5{—
T,

The approximate error in the constant of integration defined as (Cl - C)/C

(BS)

Q
V]
I

is then
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T 492
2 z B -FR3
SOEthO(TZ)5 Ty (56)
Error = - —
Now, since E; = ¢; and E = € + €5, if € 1s constant throughout,

2
_=_€__=g.§=E (B?)
4

Error = - 3 [12(B)(_o_}® 109 (x ¥(*1)® [ ] (E%f%)%]
T 6

The term within the first bracket, however, according to equation (15),
is equal to the square of the generalized length rarameter L. Thus, the

error becomes
4
eimmy® [ - (5 ]
L*(Ty/To) Ty

)]

It is also noted that a maximum value of the ratio of the bracket terms
1s obtained when T} = Tg’l = 0. Furthermore, since TZ/TO is a function

of L, the product LZ(TZ/TO)3 can be evaluated as a function of L as

shown in figure 19. It appears, from figure 19, that the function ap-
proaches a maximum value of about say 0.6. Thus, the maximum error is
simply

2

S5
Error = - B

0.375

Max. error =~ - ==
(1/t)e

(B10O)

A plot of maximum error as given by equation (B10) is shown in figure 20.
It 18 seen that the maximum error in the constant of integration resulting
from the neglecting of the end edge heat loss will be less than 5 percent
for values of length-to-thickness ratio as low as 3. Therefore, since it

6268
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is most unlikely that fin plates wi'l be designed for ratios of l/t of
about 3 or less, it can be concluded that the effects of any heat loss
from an exposed end edge can be neglected.
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Volume function, fy (L)
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